Efficacy, effectiveness, quality: sources of data

Ondřej MÁJEK

Institute of Biostatistics and Analyses, Masaryk University

Key Questions

- What data have we available for CRC screening efficacy?
- How to monitor CRC screening quality (and why)?
- What data should be publicly reported?
- How should we use information we have?

Efficacy of CRC screening - FOBT

"Evidence exists concerning the efficacy of screening for breast cancer and colorectal cancer, derived from randomised trials, and for cervical cancer, derived from observational studies." (Council Recommendation)

Colorectal cancer screening with FOBT

Mandel et al (1993) - United States

decrease in mortality by 33 %

Hardcastle et al (1996) - United Kingdom

decrease in mortality by 15 %

Kronborg et al (2004) – Denmark

decrease in mortality by 11 %,
 by 43% in persons participating in all 9 rounds

Mandel et al (2000) - United States

decrease in incidence by 20 %

Efficacy of CRC screening - FOBT

"Evidence exists concerning the efficacy of screening for breast cancer and colorectal cancer, derived from randomised trials, and for cervical cancer, derived from observational studies." (Council Recommendation)

Colorectal cancer screening with FOBT

Hewitson et al (2008) - Cochrane systematic review

	al cancer mortality (Fixed)				
Study	Screening	Control	RR (fixed	· · · · · · · · · · · · · · · · · · ·	RR (fixed)
or sub-category	n/N	Νλη	95% CI	%	95% CI
01 Randomised controlled tria	als				
Minnesota 1999	269/31157	177/15394	-	14.34	0.75 [0.62, 0.91]
Nottingham 2002	593/76466	684/76384	-	41.42	0.87 [0.78, 0.97]
Funen 2004	362/30967	431/30966	-	26.09	0.84 [0.73, 0.96]
Goteborg 2005	252/34144	300/34164	-	18.15	0.84 [0.71, 0.99]
Subtotal (95% CI)	172734	156908	*	100.00	0.84 [0.78, 0.90]
Fotal events: 1476 (Screenin	g), 1592 (Control)				
Fest for heterogeneity: Chi² =	: 1.65, df = 3 (P = 0.65), I ² = 0%				
Test for overall effect: $Z = 4$.	89 (<i>P</i> < 0.00001)				
Fotal (95% CI)	172734	156908	•	100.00	0.84 [0.78, 0.90]
Total events: 1476 (Screenin	g), 1592 (Control)		1		
Test for heterogeneity: Chi ² =	1.65, df = 3 (P = 0.65), I ² = 0%				
Test for overall effect: $Z = 4$.	89 (P < 0.00001)				

FOBT - modern tests are available now

More sensitive, adjustable positivity

Colonoscopy-controlled intra-individual comparisons to screen relevant neoplasia: faecal immunochemical test vs. quaiac-based faecal occult blood test

F. A. OORT*, J. S. TERHAAR SIVE DROSTE*, R. W. M. VAN DER HULST†, H. A. VAN HEUKELEM‡, R. J. L. F. LOFFELDS, I. C. E. WESDORP¶, R. L. J. VAN WANROOIJ*, L. DE BAAIJ*, E. R. MUTSAERS*, S. VAN DER REIJT*, V. M. H. COUPE**, J. BERKHOF**, A. A. BOUMAN††, G. A. MEIJER!! & C. J. J. MULDER*

Research Article

Cancer Epidemiology, Biomarkers & Prevention

Higher Fecal Immunochemical Test Cutoff Levels: Lower Positivity Rates but Still Acceptable Detection Rates for Early-Stage Colorectal Cancers

Jochim S. Terhaar sive Droste¹, Frank A. Oort¹, René W.M. van der Hulst², Henk A. van Heukelem³, Ruud J.L.F. Loffeld⁴, Sietze T. van Turenhout¹, Ilhame Ben Larbi¹, Shannon L. Kanis¹, Maarten Neerincx¹, Mirre Räkers¹, Veerle M.H. Coupé⁵, Anneke A. Bouman⁶, Gerrit A. Meijer⁷, and Chris J.J. Mulder¹

Efficacy of CRC screening - FOBT

"Evidence exists concerning the efficacy of screening for breast cancer and colorectal cancer, derived from randomised trials, and for cervical cancer, derived from observational studies." (Council Recommendation)

Colorectal cancer screening with FOBT

Hewitson et al (2008) - Cochrane systematic review

	al cancer mortality (Fixed)				
Study	Screening	Control	RR (fixed	· · · · · · · · · · · · · · · · · · ·	RR (fixed)
or sub-category	n/N	Νλη	95% CI	%	95% CI
01 Randomised controlled tria	als				
Minnesota 1999	269/31157	177/15394	-	14.34	0.75 [0.62, 0.91]
Nottingham 2002	593/76466	684/76384	-	41.42	0.87 [0.78, 0.97]
Funen 2004	362/30967	431/30966	-	26.09	0.84 [0.73, 0.96]
Goteborg 2005	252/34144	300/34164	-	18.15	0.84 [0.71, 0.99]
Subtotal (95% CI)	172734	156908	*	100.00	0.84 [0.78, 0.90]
Fotal events: 1476 (Screenin	g), 1592 (Control)				
Fest for heterogeneity: Chi² =	: 1.65, df = 3 (<i>P</i> = 0.65), l ² = 0%				
Test for overall effect: $Z = 4$.	89 (<i>P</i> < 0.00001)				
Fotal (95% CI)	172734	156908	•	100.00	0.84 [0.78, 0.90]
Total events: 1476 (Screenin	g), 1592 (Control)		1		
Test for heterogeneity: Chi ² =	1.65, df = 3 (P = 0.65), I ² = 0%				
Test for overall effect: $Z = 4$.	89 (P < 0.00001)				

Efficacy of CRC screening - sigmoideoscopy (only once)

My Once-only flexible sigmoidoscopy screening in prevention of colorectal cancer: a multicentre randomised controlled trial

Wendy S Atkin, Rob Edwards, Ines Kralj-Hans, Kate Wooldrage, Andrew R Hart, John M A Northover, D Max Parkin, Jane Wardle, Stephen W Duffy, Jack Cuzick, UK Flexible Sigmoidoscopy Trial Investigators

Once-Only Sigmoidoscopy in Colorectal Cancer Screening: Follow-up Findings of the Italian Randomized Controlled Trial—SCORE

Nereo Segnan, Paola Armaroli, Luigina Bonelli, Mauro Risio, Stefania Sciallero, Marco Zappa, Bruno Andreoni, Arrigo Arrigoni, Luigi Bisanti, Claudia Casella, Cristiano Crosta, Fabio Falcini, Franco Ferrero, Adriano Giacomin, Orietta Giuliani, Alessandra Santarelli, Carmen Beatriz Visioli, Roberto Zanetti, Wendy S. Atkin, Carlo Senore; and the SCORE Working Group

Manuscript received February 11, 2011; revised June 28, 2011; accepted June 30, 2011.

Correspondence to: Nereo Segnan, MD, MS, Epidemiology Unit, CPO Piemonte and S. Giovanni University Hospital, Via S Francesco da Paola 31, 10123 Torino, Italy (e-mail: nereo.segnan@cpo.it).

Atkin et al (2010)

- decrease in mortality by 31%
- decrease in incidence by 33% (per protocol)

Segnan et al (2011)

- decrease in mortality by 22% (nonsignificant)
- decrease in incidence by 18%

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Colorectal-Cancer Incidence and Mortality with Screening Flexible Sigmoidoscopy

Robert E. Schoen, M.D., M.P.H., Paul F. Pinsky, Ph.D., Joel L. Weissfeld, M.D., M.P.H., Lance A. Yokochi, M.D., M.P.H., Timothy Church, Ph.D., Adeyinka O. Laiyemo, M.D., M.P.H., Robert Bresalier, M.D., Gerald L. Andriole, M.D., Saundra S. Buys, M.D., E. David Crawford, M.D., Mona N. Fouad, M.D., Claudine Isaacs, M.D., Christine C. Johnson, M.D., Ph.D., M.P.H., Douglas J. Reding, M.D., M.P.H., Barbara O'Brien, M.P.H., Danielle M. Carrick, Ph.D., Patrick Wright, B.S., Thomas L. Riley, B.S., Mark P. Purdue, Ph.D., Grant Izmirlian, Ph.D., Barnett S. Kramer, M.D., M.P.H., Anthony B. Miller, M.D., John K. Gohagan, Ph.D., Philip C. Prorok, Ph.D., and Christine D. Berg, M.D., for the PLCO Project Team*

Schoen et al (2012) (repeated)

- decrease in mortality by 26%
- decrease in incidence by 21%

Efficacy of CRC screening - colonoscopy

Limited (observational studies) but promising evidence

Winawer et al (1993) - United States

decrease in incidence by 76-90 %

Kahi et al (2009) - United States

decrease in incidence by 67 %, decrease in mortality by 65 %

Brenner et al (2010) - Germany

decrease in advanced neoplasia rate by 48 %

and more...

Editorial

Annals of Internal Medicine

How Much Does Colonoscopy Reduce Colon Cancer Mortality?

Ransohoff (2009): We need direct evidence from randomised clinical trials

Efficacy of CRC screening - colonoscopy

Bretthauer (2011): it will take some more time

Two large-scale randomized trials investigating colonoscopy for screening are currently in progress. In the Spanish trial, 55 000 individuals between 50 and 69 years of age are being randomly assigned to either iFOBT or colonoscopy screening [44]. The trial started to recruit in 2008, screening is currently in progress at eight centres in Spain, and the final results are expected in 2021 after 10 years of follow-up. The Nordic-European Initiative on Colorectal Cancer (NordICC) is a multicentre, multinational randomisied trial, in which 66 000 individuals are randomly assigned to either colonoscopy or no screening. Screening started in 2009, and a 15-year follow-up period after screening is planned, with an interim analysis after 10 years due aroun (2022 [45]. Further, a randomized trial in the USA comparing FOBT and colonoscopy screening is currently in the planning stage (personal communication, Jason Dominitz and Doug Robertson, October 2010).

Efficacy (in trials)

Effectiveness (in real life)

How to ensure quality - organised screening

- Screening for cancer of breast, colorectum and uterine cervix is effective in decreasing mortality of the disease
- These programmes are recommended to all member states by the Council of the European Union (2003/878/EC)
- To guarantee their effectiveness, safety and cost-effectiveness, it is highly recommended to implement the prevention as organized programmes comprising:
 - an explicit policy, with specified age categories, method and interval of screening
 - defined target population
 - a management team responsible for the implementation
 - a health care team for decisions and care
 - a quality assurance structure (performance monitoring including collection of all relevant data)
 - a method for identifying cancer occurrence in the target population

IBA ROMANA BUT

Sources of data for colorectal cancer screening information support

Monitoring of Cancer Burden

- epidemiology of cancer in target population
- evaluation of screening programmes impact

Source of data: CZECH NATIONAL CANCER REGISTRY
13 regional data collection points / 57 district points
annual no. of records: 8,236 colorectal cancer cases in 2008

Performance Monitoring of Health Care Facilites

- performance indicators at screening centres
- detection of cancer and precancerous lesions

Source of data: RECOMMENDED HEALTH CARE FACILITIES 160 centres (summer 2011)

annual no. of records: 22,227 preventive colonoscopies in 2010

Monitoring using Administrative Data

- population-based performance indicators
- monitoring of programmes accessibility by target population
- assessment of programmes cost-effectiveness

Source of data: HEALTH INSURANCE COMPANIES – NATIONAL REFERENCE CENTRE 8 health insurance companies / 4,400 general practitioner offices, 1,200 gynaecologist offices annual no. of records: 521,000 FOBTs performed in 2010

Information Support Provider
MASARYK UNIVERSITY, INSTITUTE OF BIOSTATISTICS AND ANALYSES

Peformance indicators in screening programmes

- □ EARLY PERFORMANCE INDICATORS
 - relating to target population
 - coverage by examination, positivity
 - relating to screening centres
 - detection rates, complication rates, stage of cancers, PPVs, time intervals

- PAYERS –
 NATIONAL
 REFERENCE
 CENTRE
 - SCREENING REGISTRY

- LONG-TERM IMPACT INDICATORS
 - □ relating to screening outcomes
 - mortality, incidence rates

□ decrease in mortality is inevitably long-term and difficult to measure

Should these things be 100% publicly available?

Table 3: Surgeon Observed, Expected, and Risk-Adjusted Mortality Rates (RAMR) for Coronary Artery Bypass Grafts in New York State, 1996-1998 Discharges

	Cases	No. of Deaths	OMR	EMR	RAMR	95% for R	
Albany Medical Center Hosp	oital						
##Banker M	7	1	14.29	2.07	15.69	(0.21,	87.29
Britton L	413	4	0.97	1.52	1.45	(0.39,	3.72
Canavan T	519	2	0.39	1.50	0.58 **	(0.07,	2.11
Foster E	239	3	1.26	1.86	1.53	(0.31,	4.48
#Joyce F	122	2	1.64	1.24	2.99	(0.34,	10.81
Kelley J	593	18	3.04	1.71	4.04 *	(2.39,	6.38
Luber J	329	8	2.43	1.91	2.89	(1.24,	5.69
Miller S	460	3	0.65	2.03	0.73 **	(0.15,	2.14
#Sardella G	158	0	0.00	1.25	0.00	(0.00,	4.21
All Others	105	2	1.90	1.72	2.52	(0.28,	9.08
TOTAL	2945	43	1.46	1.69	1.97	(1.42,	2.65
Arnot Ogden Memorial Hosp	oital						
Quintos E	266	13	4.89	1.98	5.61 *	(2.98,	9.59
√aughan J	89	2	2.25	2.05	2.49	(0.28,	9.01
All Others	14	0	0.00	1.36	0.00	(0.00,	43.66
ГОТАL	369	15	4.07	1.97	4.68 *	(2.62,	7.72

By hospital/physician?

How to communicate benefits and risks?

Using an <u>informed decision making</u> approach in developing communication materials for screening promotes:

- An understanding of the disease and one's <u>risk of getting the</u> <u>disease</u>;
- An understanding of information about the screening test, including <u>risks and benefits</u> of the test, <u>uncertainties and</u> <u>limitations</u>, <u>alternatives</u> to the test, and follow-up clinical services;
- An understanding of one's <u>personal preferences and values</u> and how to apply them to the screening decision; and
- Participation in decision making at the level desired by the person making the decision.

Could it be scarry messages? example of breast screening

Table 4 Balance sheet for 1000 women aged 50–51 years, screened biennially until 69 years (according to the EU policy on cancer screening³) and followed until 79 years

Outcome	For every 1000 women screened for 20 years:	The number of women that need to be screened:
Number of breast cancer cases diagnosed	71	14 women: to diagnose 1 case
BC mortality reduction	7–9 women's lives are saved (out of 30 BC deaths expected)*	111–143 women: to save 1 life
Over-diagnosis	4 cases are over-diagnosed (in addition to 67 BC expected)	250 women: to over-diagnose 1 case
False-positive test results among women without breast cancer	200 women recalled for further assessment procedures: 170 women with non-invasive assessment only 30 women with invasive assessment	6 women: to have 1 with at least one who has non-invasive assessment only 33 women: to have 1 with at least one invasive assessment

BC, breast cancer; EU, European Union

ORIGINAL ARTICLE

Summary of the evidence of breast cancer service screening outcomes in Europe and first estimate of the benefit and harm balance sheet

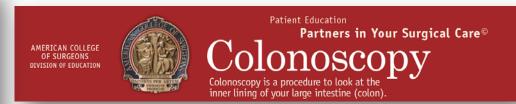
EUROSCREEN Working Group

J Med Screen 2012;19 Suppl 1:5-13 DOI: 10.1258/jms.2012.012077

Can it negatively affect participation?

^{*19} out of the 30 expected BC death were diagnosed in ages 50-69

Or even more scarry messages?


Benefits

A colonoscopy is the most accurate way to find and remove small polyps and get a biopsy. If you do not have a colonoscopy, polyps or cancer may not be identified until a more advanced stage. 4.5

Risks

Your doctor will do everything possible to decrease risks, but colonoscopy and sigmoidoscopy, like all procedures, have risks.

The Risk	What Happens	Keeping You Informed
Perforation	Perforation (hole that passes through the entire wall of the colon) is reported in 0 to 2 per 1,000 procedures. The risk can increase for therapeutic procedures. Pressure from the scope, a tear when air is inserted, and polyp removal can cause perforation. 6-12	Management of perforation depends on the size, whether it's noticed immediately or later, and how you are feeling overall. A large perforation noticed immediately requires surgery. A perforation noticed several days later is treated by rest, intravenous fluids, antibiotics, and close observation. It may also require an operation. Call your doctor if you have fever, abdominal tenderness, or shortness of breath. 3
Bleeding	Bleeding is reported in 0 to 4 per 1,000 procedures. The risk is greater with large polyp removal. ⁶⁻⁹	A trace of blood is normal. If there is over 4 tablespoons of bleeding, call your doctor immediately. You will be watched carefully and may be given blood. Surgery is rarely necessary.
Cardiorespiratory	Complications during the procedure can include irregular heart beat (1 per 1,000), low heart rate (8 per 1,000), low blood pressure (12 per 1,000), low oxygen levels (56 per 1,000), and heart attacks and stroke (fewer than 1 per 1,000). 59	Cardiorespiratory complications are usually related to medicine given to keep you comfortable during the procedure. Your doctor will monitor your heart rate, breathing, and oxygen levels. Oxygen and intravenous fluids will be given if needed.
Death	No deaths are reported for screening or therapeutic colonoscopy since 2000. ⁶⁻¹¹	There is a small risk of death (1 per 10,000) with a therapeutic colonoscopy (a colonoscopy for treatment of disease or bleeding). 6-12

Can it negatively affect participation?

Notes:

- There is convincing evidence that colorectal cancer screening with different screening tests can decrease mortality or incidence from colorectal cancer. It is possible to provide screening with favourable balance of benefits and risks.
- Quality should be thoroughly monitored to ensure that this balance really holds in real practice.

More questions

- Should information be acquired during monitoring made publicly available (what)?
- How should be information about benefits and risks delivered to support informed decision making (but also to improve participation – is that what we want?)